alexa Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission.
Physics

Physics

Journal of Lasers, Optics & Photonics

Author(s): Burdett JJ, Bardeen CJ

Abstract Share this page

Abstract A detailed analysis of the oscillations seen in the delayed fluorescence of crystalline tetracene is presented in order to study the mechanism of singlet fission. Three quantum beat frequencies of 1.06 ± 0.05, 1.82 ± 0.05, and 2.92 ± 0.06 GHz are resolved, which are damped on a time scale of 20 ns. The effects of sample morphology, excitation wavelength, and temperature are examined. A density matrix model for singlet fission is developed that quantitatively describes the frequencies, amplitudes, and damping of the oscillations. The model assumes a direct coupling of the initially excited singlet exciton to the triplet pair manifold. There is no electronic coherence between the singlet and triplet pair states, but the rapid singlet decay time of ∼200 ps in solution-grown single crystals provides the impulsive population transfer necessary to create a coherent superposition of three zero-field triplet pair states |xx>, |yy>, and |zz> with overall singlet character. This superposition of the three states gives rise to the three quantum beat frequencies seen in the experiment. Damping of the quantum beats results from both population exchange between triplet and singlet manifolds and pure dephasing between the triplet pair states. By lowering the temperature and slowing the SF rate, the visibility of the oscillations decreases. There is no evidence of magnetic dipole-dipole coupling between the product triplets. Our model provides good overall agreement with the data, supporting the conclusion that singlet fission in tetracene proceeds through the "direct" mechanism without strong electronic coupling between the singlet and triplet pair states. This article was published in J Am Chem Soc and referenced in Journal of Lasers, Optics & Photonics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords