alexa Quantum dot cytotoxicity and ways to reduce it.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Winnik FM, Maysinger D

Abstract Share this page

Abstract The dramatic increase in the use of nanoparticles (NP) in industry and research has raised questions about the potential toxicity of such materials. Unfortunately, not enough is known about how the novel, technologically-attractive properties of NPs correlate with the interactions that may take place at the nano/bio interface. The academic, industrial, and regulatory communities are actively seeking answers to the growing concerns on the impact of nanotechnology on humans. In this Account we adopt quantum dots (QDs) as an illustrative example of the difficulties associated with the development of a rational science-based approach to nanotoxicology. The optical properties of QDs are far superior to those of organic dyes in terms of emission and absorption bandwidths, quantum yield, and resistance to photobleaching. Moreover, QDs may be decorated with targeting moieties or drugs and, therefore, are candidates for site-specific medical imaging and for drug delivery, for example in cancer treatment. Earlier this year researchers demonstrated that QD-based imaging using monkeys caused no adverse effects although QDs accumulated in lymph nodes, bone marrow, liver, and spleen for up to 3 months after injection. Such persistence of QDs in live animals does, however, raise concerns about the safety of using QDs both in the laboratory and in the clinic. Researchers anticipate that QDs will be increasingly used not only in clinical applications but also in various manufactured products. For example, QD-solar cells have emerged as viable contenders to complement or replace dye-sensitized solar cells; CdTe/CdS thin film cells have already captured approximately 10 percent of the global market, and in addition, QDs can serve as components of sensors and as emitting materials in LEDs. Given the clear indications that QDs will inevitably become components of a wide range of manufactured and consumer products, researchers and policy makers need to understand the possible health risks associated with exposure to QDs. In this Account, we initially review the known mechanisms by which QDs can damage cells, including oxidative stress elicited by reactive oxygen species (ROS). We discuss lesser-known impairments induced in cells by nanomolar to picomolar concentrations of QDs, which imply that cadmium-containing QDs can exert genotoxic, epigenetic, and metalloestrogenic effects. These observations strongly suggest that minute concentrations of QDs could be sufficient to cause long lasting, even transgenerational, effects. We also consider various modes by which humans could be exposed to QDs in their work or through the environment. Although considerable advances have been made in enhancing the stability and overall quality of QDs, over time they can partially degrade in the environment or in biological systems, and eventually cause small, but cumulative undesirable effects. A combination of toxicological, genetic, epigenetic and imaging approaches is required to create comprehensive guidelines for evaluating the nanotoxicity of nanomaterials, including QDs. Prior to biological investigations with these materials, an indispensible step must be the full characterization of NPs by complementary techniques. Specifically, the concentration, size, charge, and ligand stability of NPs in biological media must be known if we are to understand fully how the properties of nanoparticles and of their biological environment contribute to cytotoxicity. This article was published in Acc Chem Res and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version