alexa Quasi-cellular systems: stochastic simulation analysis at nanoscale range.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Current Synthetic and Systems Biology

Author(s): Calviello L, Stano P, Mavelli F, Luisi PL, Marangoni R

Abstract Share this page

Abstract BACKGROUND: The wet-lab synthesis of the simplest forms of life (minimal cells) is a challenging aspect in modern synthetic biology. Quasi-cellular systems able to produce proteins directly from DNA can be obtained by encapsulating the cell-free transcription/translation system PURESYSTEM(PS) in liposomes. It is possible to detect the intra-vesicle protein production using DNA encoding for GFP and monitoring the fluorescence emission over time. The entrapment of solutes in small-volume liposomes is a fundamental open problem. Stochastic simulation is a valuable tool in the study of biochemical reaction at nanoscale range. QDC (Quick Direct-Method Controlled), a stochastic simulation software based on the well-known Gillespie's SSA algorithm, was used. A suitable model formally describing the PS reactions network was developed, to predict, from inner species concentrations (very difficult to measure in small-volumes), the resulting fluorescence signal (experimentally observable). RESULTS: Thanks to suitable features specific of QDC, we successfully formalized the dynamical coupling between the transcription and translation processes that occurs in the real PS, thus bypassing the concurrent-only environment of Gillespie's algorithm. Simulations were firstly performed for large liposomes (2.67µm of diameter) entrapping the PS to synthetize GFP. By varying the initial concentrations of the three main classes of molecules involved in the PS (DNA, enzymes, consumables), we were able to stochastically simulate the time-course of GFP-production. The sigmoid fit of the GFP-production curves allowed us to extract three quantitative parameters which are significantly dependent on the various initial states. Then we extended this study for small-volume liposomes (575 nm of diameter), where it is more complex to infer the intra-vesicle composition, due to the expected anomalous entrapment phenomena. We identified almost two extreme states that are forecasted to give rise to significantly different experimental observables. CONCLUSIONS: The present work is the first one describing in the detail the stochastic behavior of the PS. Thanks to our results, an experimental approach is now possible, aimed at recording the GFP production kinetics in very small micro-emulsion droplets or liposomes, and inferring, by using the simulation as a reverse-engineering procedure, the internal solutes distribution, and shed light on the still unknown forces driving the entrapment phenomenon.
This article was published in BMC Bioinformatics and referenced in Current Synthetic and Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version