alexa Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G

Abstract Share this page

Abstract Quaternized modifications of chitosan present characteristics that might be useful in DNA condensing and efficient gene delivery. Trimethylated chitosan (TMO) was synthesized from oligomeric chitosan (<20 monomer units). TMOs spontaneously formed complexes (chitoplexes) with RSV-alpha3 luciferase plasmid DNA. These complexes were characterized by photon correlation spectroscopy and were investigated for their ability to transfect COS-1 and Caco-2 cell lines in the presence and absence of fetal calf serum and compared with DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium sulphate) lipoplexes. Additionally, their effect on the viability of the respective cell cultures was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Results showed that quaternized chitosan oligomers were able to condense DNA and form complexes with a size ranging from 200 to 500 nm. Chitoplexes proved to transfect COS-1 cells, however, to a lesser extent than DOTAP-DNA lipoplexes. The quaternized oligomer derivatives appeared to be superior to oligomeric chitosan. The presence of fetal calf serum (FCS) did not affect the transfection efficiency of the chitoplexes, whereas the transfection efficiency of DOTAP DNA complexes was decreased. Cells remained 100\% viable in the presence of chitosan oligomers whereas viability of DOTAP treated cells decreased to approximately 50\% in both cell lines. Both DOTAP-DNA lipoplexes and chitoplexes resulted in less transfection efficiency in Caco-2 cell cultures than in COS-1 cells; however quaternized chitosan oligomers proved to be superior to DOTAP. Effects on the viability of Caco-2 cells were similar to the effects observed in COS-1 cells. We conclude that trimethylated chitosan-DNA complexes present suitable characteristics and the potential to be used as gene delivery vectors.
This article was published in Biomaterials and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords