alexa Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Developing Drugs

Author(s): Adam O, Lavall D, Theobald K, Hohl M, Grube M,

Abstract Share this page

Abstract OBJECTIVES: We studied the signal transduction of atrial structural remodeling that contributes to the pathogenesis of atrial fibrillation (AF). BACKGROUND: Fibrosis is a hallmark of arrhythmogenic structural remodeling, but the underlying molecular mechanisms are incompletely understood. METHODS: We performed transcriptional profiling of left atrial myocardium from patients with AF and sinus rhythm and applied cultured primary cardiac cells and transgenic mice with overexpression of constitutively active V12Rac1 (RacET) in which AF develops at old age to characterize mediators of the signal transduction of atrial remodeling. RESULTS: Left atrial myocardium from patients with AF showed a marked up-regulation of connective tissue growth factor (CTGF) expression compared with sinus rhythm patients. This was associated with increased fibrosis, nicotinamide adenine dinucleotide phosphate oxidase, Rac1 and RhoA activity, up-regulation of N-cadherin and connexin 43 (Cx43) expression, and increased angiotensin II tissue concentration. In neonatal rat cardiomyocytes and fibroblasts, a specific small molecule inhibitor of Rac1 or simvastatin completely prevented the angiotensin II-induced up-regulation of CTGF, Cx43, and N-cadherin expression. Transfection with small-inhibiting CTGF ribonucleic acid blocked Cx43 and N-cadherin expression. RacET mice showed up-regulation of CTGF, Cx43, and N-cadherin protein expression. Inhibition of Rac1 by oral statin treatment prevented these effects, identifying Rac1 as a key regulator of CTGF in vivo. CONCLUSIONS: The data identify CTGF as an important mediator of atrial structural remodeling during AF. Angiotensin II activates CTGF via activation of Rac1 and nicotinamide adenine dinucleotide phosphate oxidase, leading to up-regulation of Cx43, N-cadherin, and interstitial fibrosis and therefore contributing to the signal transduction of atrial structural remodeling. Copyright (c) 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. This article was published in J Am Coll Cardiol and referenced in Journal of Developing Drugs

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords