alexa Radiation force imaging of viscoelastic properties with reduced artifacts.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Viola F, Walker WF

Abstract Share this page

Abstract It is well-known that changes in the mechanical properties of tissues are correlated with the presence of disease. In the eye, for example, the vitreous body undergoes dramatic changes in mechanical properties during age-related degradation. These changes may play a significant role in the formation of retinal detachment or other vitreoretinal diseases. We previously presented a noninvasive method called kinetic acoustic vitreoretial examination (KAVE), which may be used to detect these mechanical changes. KAVE uses acoustic radiation force as a means to produce small, localized displacements within the tissues. Returning echoes are processed using ultrasonic motion tracking so that the response of the tissue to the induced force can be evaluated. By repeating this process at a number of locations, images depicting viscoelastic properties of tissues can be formed. Through the combination of appropriate mechanical modeling and signal processing, we are able to generate images of parameters such as relative mass, relative elasticity, and relative viscosity. These parameters are called relative because they depend on the force applied, which is typically unknown. In this paper, we present new force-free images depicting the time constant tau, the damping ratio xi, and the natural frequency omega of the phantom material. These images are significant in that they lack the artifacts common in the relative property images. Experiments were conducted on a set of three acrylamide-based phantoms with varying gel concentrations. We present images depicting B-mode echogenicity, maximum radiation force-induced displacement, relative material parameters, and force-free characteristics of the series of phantoms. The presented force-free images depict mechanical properties without artifacts from local force variation due to acoustic reflection, refraction, and attenuation. Force-free images should prove particularly useful for in vivo imaging through inhomogeneous tissues.
This article was published in IEEE Trans Ultrason Ferroelectr Freq Control and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords