alexa Radiobiological basis in management of accidental radiation exposure.

Author(s): Pandey BN, Kumar A, Tiwari P, Mishra KP

Abstract Share this page

Abstract PURPOSE: With increasing utilisation of nuclear technologies in power production, medical and industrial applications, and in a scenario of nuclear terrorism/war, there is an enhanced likelihood of accidental radiation exposure to occupational workers, patients and public. The consequent health effects of the radiation exposure are resultant of interaction of radiation with biological systems and subsequent radiation injury. The present review discusses the knowledge gained in radiation biology that can be exploited for better treatment and management of radiation accident victims. RESULTS: In comparison with planned radiation exposure during diagnosis/therapy, the management of accidental radiation exposure is quite complicated due to uncertainties in dose, duration, organs involved and radionuclides internalised, and hence, require multi-faceted approaches. However, the options available for dosimetry, decorporation of radionuclides and therapeutic protocols of patients are limited, which provides substantial scope in these areas of research. Moreover, there is a need to fill the gaps in knowledge of radiation action in different dose ranges and post-irradiation windows, which would help in improving therapeutic approaches. Cytogenetic approaches are 'gold standard' for biodosimetry but with limited applications in mass casualty scenario. State-of-the-art technological advancement and high throughput in metabolomics, proteomics and genomics could be employed successfully in developing better biodosimetry for triage in accidental radiation exposure. Furthermore, identification of targets at organs/organelles level of internalised radionuclides would be helpful to develop effective decorporation strategies. Despite substantial research investigating several agents, which could modify radiation effects, only a few could reach up to practical application due to poor bioavailability or toxicity. CONCLUSIONS: Deeper insight into the mechanisms of radiation injury under accidental radiation conditions would be helpful in achieving better biodosimetry, decorporation strategies and improvement in prevention/post-irradiation management of radiation accident patients. This article was published in Int J Radiat Biol and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version