alexa Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells.
Pediatrics

Pediatrics

Pediatrics & Therapeutics

Author(s): Hosoi H, Dilling MB, Shikata T, Liu LN, Shu L,

Abstract Share this page

Abstract The mammalian target of rapamycin (mTOR) has been shown to link growth factor signaling and posttranscriptional control of translation of proteins that are frequently involved in cell cycle progression. However, the role of this pathway in cell survival has not been demonstrated. Here, we report that rapamycin, a specific inhibitor of mTOR kinase, induces G1 cell cycle arrest and apoptosis in two rhabdomyosarcoma cell lines (Rh1 and Rh30) under conditions of autocrine cell growth. To examine the kinetics of rapamycin action, we next determined the rapamycin sensitivity of rhabdomyosarcoma cells exposed briefly (1 h) or continuously (6 days). Results demonstrate that Rh1 and Rh30 cells were equally sensitive to rapamycin-induced growth arrest and apoptosis under either condition. Apoptosis was detected between 24 and 144 h of exposure to rapamycin. Both cell lines have mutant p53; hence, rapamycin-induced apoptosis appears to be a p53-independent process. To determine whether induction of apoptosis by rapamycin was specifically due to inhibition of mTOR signaling, we engineered Rh1 and Rh30 clones to stably express a mutant form of mTOR that was resistant to rapamycin (Ser2035-->Ile; designated mTOR-rr). Rh1 and Rh30 mTOR-rr clones were highly resistant (>3000-fold) to both growth inhibition and apoptosis induced by rapamycin. These results are the first to indicate that rapamycin-induced apoptosis is mediated by inhibition of mTOR. Exogenous insulin-like growth factor (IGF)-I protected both Rh1 and Rh30 from apoptosis, without reactivating ribosomal p70 S6 kinase (p70S6K) downstream of mTOR. However, in rapamycin-treated cultures, the response to IGF-I differed between the cell lines: Rh1 cells proliferated normally, whereas Rh30 cells remained arrested in G1 phase but viable. Rapamycin is known to inhibit synthesis of specific proteins but did not inhibit synthesis or alter the levels of mTOR. To examine the rate at which the mTOR pathway recovered, the ability of IGF-I to stimulate p70S6K activity was followed in cells treated for 1 h with rapamycin and then allowed to recover in medium containing > or =100-fold excess of FK506 (to prevent rapamycin from rebinding to its cytosolic receptor FKBP-12). Our results indicate that, in Rh1 cells, rapamycin dissociates relatively slowly from FKBP-12, with a t1/2 of approximately 17.5 h. in the presence of FK506, whereas there was no recovery of p70S6K activity in the absence of this competitor. This was of interest because rapamycin was relatively unstable under conditions of cell culture having a biological t1/2 of approximately 9.9 h. These results help to explain why cells are sensitive following short exposures to rapamycin and may be useful in guiding the use of rapamycin analogues that are entering clinical trials as novel antitumor agents.
This article was published in Cancer Res and referenced in Pediatrics & Therapeutics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords