alexa Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Kane SR, Ltant SE, Murphy GA, Alfaro TM, Krauter PW,

Abstract Share this page

Abstract To rapidly remediate facilities after a biothreat agent release, improved turnaround times are needed for sample analysis. Current methods to confirm the presence of a viable biothreat agent are limited by low sample throughput. We have developed a rapid-viability-polymerase chain reaction (RV-PCR) method to determine the presence of viable spores. The method combines high-throughput sample processing with 96-well PCR analysis, which measures a change in real-time, quantitative PCR response arising from increased target-cell populations during culturing. The method accurately detects 1 to 10 live spores in a high-dead spore background (10(6)). Field tests using approximately 1000 biological indicators, each containing 10(6) spores of the B. anthracis surrogate, Bacillus atrophaeus, exposed to seven lethal and sub-lethal chlorine dioxide levels showed no significant difference (p>0.05) between RV-PCR and standard culturing methods for detecting the percent survival of spores. RV-PCR results were obtained in <17 h compared to 7 days for the standard culturing method. High-throughput sample processing and RV-PCR protocols were also developed and tested for synthetic wipe samples containing reference dirt material. RV-PCR protocols allowed processing and accurate analysis of approximately100 dirty wipe samples (2''x2'' synthetic) containing approximately10 viable B. atrophaeus spores in <24 h. Quantitative RV-PCR protocols based on a Most-Probable-Number (MPN) statistical approach developed for B. anthracis Sterne resulted in more rapid turnaround times than those for traditional culturing and no significant difference in log colony-forming units compared to traditional viability analysis. Integration of RV-PCR assays with high-throughput protocols will allow the processing of 200 wipe samples per day per robot using commercially available automation. This article was published in J Microbiol Methods and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords