alexa Rapid reprogramming of haemoglobin structure-function exposes multiple dual-antimicrobial potencies.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Du R, Ho B, Ding JL

Abstract Share this page

Abstract The intrinsic cytotoxicity of cell-free haemoglobin (Hb) has hampered the development of reliable Hb-based blood substitutes for over seven decades. Notably, recent evidence shows that the Hb deploys this cytotoxic attack against invading microbes, albeit, through an unknown mechanism. Here, we unraveled a rapid molecular reprogramming of the Hb structure-function triggered by virulent haemolytic pathogens that feed on the haem-iron. On direct contact with the microbe, the Hb unveils its latent antimicrobial potency, where multiple antimicrobial fragments are released, each harbouring coordinated 'dual-action centres': microbe binding and pseudoperoxidase (POX) cycle activity. The activated Hb fragments anchor onto the microbe while the juxtaposed POX instantly unleashes a localized oxidative shock, killing the pathogen-in-proximity. This concurrent action conceivably restricts the diffusion of free radicals. Furthermore, the host astutely protects itself from self-cytotoxicity by simultaneously releasing endogenous antioxidants. We found that this decryption mechanism of antimicrobial potency is conserved in the ancient invertebrate respiratory protein, indicating its fundamental significance. Our definition of dual-antimicrobial centres in the Hb provides vital clues for designing a safer Hb-based oxygen carrier blood substitute.
This article was published in EMBO J and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords