alexa Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems.
Chemical Engineering

Chemical Engineering

Journal of Thermodynamics & Catalysis

Author(s): Kwan WP, Voelker BM

Abstract Share this page

Abstract The iron oxide-catalyzed production of hydroxyl radical (*OH) from hydrogen peroxide (H2O2) has been used to oxidize organic contaminants in soils and groundwater. The goals of this study are to determine which factors control the generation rate of *OH (VOH) and to show that if VOH and the rate constants of the reactions of *OH with the system's constituents are known, the oxidation rate of a dissolved organic compound can be predicted. Using 14C-labeled formic acid as a probe, we measured VOH in pH 4 slurries of H2O2 and either synthesized ferrihydrite, goethite, or hematite or a natural iron oxide-coated quartzitic aquifer sand. In all of our experiments, VOH was proportional to the product of the concentrations of surface area of the iron oxide and H2O2, although different solids produced *OH at different rates. We used these results to develop a model of the decomposition rate of formic acid as a function of the initial formic acid and hydrogen peroxide concentrations and of the type and quantity of iron oxide. Our model successfully predicted the VOH and organic compound oxidation rates observed in our aquifer sand experiment and in a number of other studies but overpredicted VOH and oxidation rates in other cases, possibly indicating that unknown reactants are either interfering with *OH production or consuming *OH in these systems.
This article was published in Environ Sci Technol and referenced in Journal of Thermodynamics & Catalysis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • Global Conference on Physical Chemistry
    September 18-19, 2017 Dublin, Ireland
  • 2nd International Conference on Applied Chemistry
    October 16-17, 2017 Toronto, Canada
  • 2nd International Conference and Exhibition on Polymer Chemistry
    November 06-08, 2017 Chicago, USA
  • International Conference on Nuclear Chemistry
    December 8-9 , 2016 San Antonio, Texas, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords