alexa Rational design of quinazoline-based irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase
Microbiology

Microbiology

Journal of Chemical Biology & Therapeutics

Author(s): Dempcy RO, Skibo EB

Abstract Share this page

Described herein is the rational design of irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase (PNPase). Inhibitor design started with the observation that the amino group of 8-aminoquinazolin-4(3H)-one interacts with enzyme-bound phosphate. This observation correctly predicted that the 5,8-dione (quinone) and 5,8-dihydroxy (hydroquinone) derivatives of quinazolin-4(3H)-ones would enter the active site. The amine-phosphate interaction also served to confirm that a quinazolin-4(3H)-one binds in the PNPase active sites like a purine substrate. From models of the PNPase active site it was possible to design quinazoline-based quinones that undergo a reductive-addition reaction with an active-site glutamate residue. The best inhibitor studied, 2-(chloromethyl)quinazoline-4,5,8(3H)-trione, rapidly inactivates PNPase by a first-order process with an inhibitor to enzyme stoichiometry of 150. The active-site hydroquinone adduct of this inhibitor eliminates a leaving group to afford a quinone methide species positioned to alkylate another active-site glutamate residue. Thus, this inhibitor is designed to cross-link the PNPase active site by reductive addition followed by the generation of an alkylating quinone methide species.

This article was published in Biochem and referenced in Journal of Chemical Biology & Therapeutics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

OMICS International Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version