alexa Reaction rate enhancement by surface diffusion of adsorbates.


Journal of Membrane Science & Technology

Author(s): Wang D, Gou SY, Axelrod D

Abstract Share this page

Abstract Ligands can be captured by a surface target through either direct bulk diffusion or surface diffusion following reversible adsorption to the surface. We have solved a steady state boundary value problem for a perfect sink disk target in the surface, taking into account bulk and surface diffusion coefficients D and Ds and adsorption/desorption kinetic rate constants ka and kd at non-target regions. Solutions have been successfully found by numerical computation. The results show that the rate of capture from the surface depends non-linearly on Ds, D, ka, kd and geometrical dimensions. In particular, we demonstrate that not only is the non-target region equilibrium constant Keq (= ka/kd) important in determining the rate of capture from the surface, but so are the kinetic rate constants ka and kd separately. In all cases, the surface adsorption/diffusion combination enhances the total rate of capture. The results should be useful for predicting reaction rates of biological membrane bound receptor clusters and substrate-immobilized enzymes.
This article was published in Biophys Chem and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference and Expo on Water Microbiology & Novel Technologies
    (10 Plenary Forums 3 days 1 Event)
    August 28-30, 2017, Philadelphia, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version