alexa Reactive oxygen species, isotope effect, essential nutrients, and enhanced longevity.


Journal of Physical Chemistry & Biophysics

Author(s): Shchepinov MS

Abstract Share this page

Abstract A method is proposed that has the potential to lessen detrimental damages caused by reactive oxygen species (ROS) to proteins, nucleic acids, lipids, and other components in living cells. Typically, ROS oxidize substrates by a mechanism involving hydrogen abstraction in a rate-limiting step. The sites within these (bio)molecules susceptible to oxidation by ROS can thus be "protected " using heavier isotopes such as (2)H (D, deuterium) and (13)C (carbon-13). Ingestion of isotopically reinforced building blocks such as amino acids, lipids and components of nucleic acids and their subsequent incorporation into macromolecules would make these more stable to ROS courtesy of an isotope effect. The implications may include enhanced longevity and increased resistance to cancer and age-related diseases. This article was published in Rejuvenation Res and referenced in Journal of Physical Chemistry & Biophysics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 5th International Conference and Exhibition on Physical Medicine & Rehabilitation
    Aug 14-16, 2017 Los Angeles, USA
  • 2nd International Conference on Physics
    Aug 28-30, 2017 Brussels, Belgium
  • 5th Global Chemistry Congress
    September 04-06, 2017 London, UK
  • 3rd World Chemistry Conference
    September 11-12, 2017 Dallas, USA
  • Global Conference on Physical Chemistry
    September 18-19, 2017 Dublin, Ireland
  • 2nd International Conference on Applied Chemistry  
    October 16-17, 2017 Toronto, Canada
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version