alexa Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Tsang WP, Chau SP, Kong SK, Fung KP, Kwok TT

Abstract Share this page

Abstract Doxorubicin (DOX) is a common anticancer drug. The mechanisms of DOX induced apoptosis and the involvement of reactive oxygen species (ROS) in apoptotic signaling were investigated in p53-null human osteosarcoma Saos-2 cells. Accumulation of pre-G1 phase cells and induction of DNA laddering, which are the hallmarks of apoptosis, were detected in cells at 48 h upon DOX treatment. Furthermore, DOX increased the intracellular hydrogen peroxide and superoxide levels, followed by mitochondrial membrane depolarization, cytochrome c release, caspase-3 activation, prior to DNA laddering in Saos-2 cells. In addition, DOX treatment also upregulated Bax and downregulated Bcl-2 levels in the cells. The role of ROS in DOX induced cell death was confirmed by the suppression effect of catalase on DOX induced ROS formation, mitochondrial cytochrome c release, procaspase-3 cleavage, and apoptosis in Saos-2 cells. The catalase treatment however only suppressed DOX induced Bax upregulation but had no effect on Bcl-2 downregulation. Results from the present study suggested that ROS might act as the signal molecules for DOX induced cell death and the process is still functional even in the absence of p53.
This article was published in Life Sci and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords