alexa Reactive oxygen species modulate Zn(2+)-induced apoptosis in cancer cells.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Provinciali M, Donnini A, Argentati K, Di Stasio G, Bartozzi B,

Abstract Share this page

Abstract Some recent evidence has suggested a protective role of zinc against cancer. The mechanism by which zinc exerts this action has not been defined and, in particular, it has not been clarified whether zinc may directly act on cancer cells and the molecular mechanisms involved in this effect. In this study, we examined the in vitro effect of zinc on the apoptosis of mouse TS/A mammary adenocarcinoma cells, studying the zinc-dependent modulation of the intracellular levels of reactive oxygen species (ROS) and of p53 and Fas/Fas ligand pathways. We showed that zinc concentrations ranging from 33.7 to 75 muM Zn(2+) induced apoptosis in mammary cancer cells. The apoptosis was associated with an increased production of intracellular ROS, and of p53 and Fas/Fas ligand mRNA and protein. Zn(2+) induced a faint metallothionein response in TS/A cells in comparison with mouse lymphocytes. The treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and Fas ligand protein induced by zinc. The data demonstrate that zinc exerts a direct action on mammary cancer cells inducing ROS-mediated apoptosis and that the effect may be mediated by the ROS-dependent induction of p53 and Fas/Fas ligand.
This article was published in Free Radic Biol Med and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version