alexa Real-Time Polymerase Chain Reaction Quantification of Phytophthora capsici in Different Pepper Genotypes.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Silvar C, Daz J, Merino F

Abstract Share this page

Abstract ABSTRACT Reliable and sensitive quantification of Phytophthora capsici in pepper plants is of crucial importance in managing the multiple syndromes caused by this pathogen. A real-time polymerase chain reaction (PCR) assay was developed for the determination of P. capsici in pepper tissues. DNA levels of a highly virulent and a less virulent isolate were measured in different pepper genotypes with varying degrees of resistance. Using SYBR Green and specific primers for P. capsici, the minimal amount of pathogen DNA quantified was 10 pg. Pathogen DNA was recorded as early as 8 h postinoculation. Thereafter, the increase was rapid in susceptible cultivars and slower in resistant ones. The amount of pathogen DNA quantified in each pepper genotype correlated with susceptibility to Phytophthora root rot. Likewise, there was a relationship between the virulence of the pathogen and the degree of colonization. Differences also were found in oomycete amount among pepper tissues, with maximal pathogen biomass occurring in stems. The real-time PCR technique developed in this study was sensitive and robust enough to assess both pathogen development and resistance to Phytophthora root rot in different pepper genotypes. This article was published in Phytopathology and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords