alexa Recovery periods restore mechanosensitivity to dynamically loaded bone.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Novel Physiotherapies

Author(s): Robling AG, Burr DB, Turner CH

Abstract Share this page

Abstract Bone cells are capable of sensing and responding to mechanical forces, but mechanosensitivity begins to decline soon after the stimulus is initiated. Under continued stimulation, bone is desensitized to mechanical stimuli. We sought to determine the amount of time required to restore mechanosensitivity to desensitized bone cells in vivo by manipulating the recovery time (0, 0.5, 1, 2, 4 or 8 h) allowed between four identical daily loading bouts. We also investigated the osteogenic effectiveness of shorter-term recovery periods, lasting several seconds (0.5, 3.5, 7 or 14 s), introduced between each of 36 identical daily loading cycles. Using the rat tibia four-point bending model, the right tibia of 144 adult female Sprague-Dawley rats was subjected to bending, sham bending or no loading. In the rats receiving recovery periods between loading bouts, histomorphometric measurements from the endocortical surface of the loaded and nonloaded control (left) tibiae revealed more than 100 \% higher relative bone formation rates in the 8 h recovery group than in the 0 and 0.5 h recovery groups. Approximately 8 h of recovery was sufficient to restore full mechanosensitivity to the cells. In the rats allowed time to recover between load cycles, 14 s of recovery resulted in significantly higher (66-190 \%) relative bone formation rates compared to any of the three shorter recovery periods. In both experiments, bone formation in the sham-bending animals was similar to that in the nonloaded control group. The results demonstrate the importance of recovery periods for (i) restoring mechanosensitivity to bone cells and (ii) maximizing the osteogenic effects of mechanical loading (exercise) regimens.
This article was published in J Exp Biol and referenced in Journal of Novel Physiotherapies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 5th International Conference on Physiotherapy
    November 27-28, 2017 Dubai, UAE

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords