alexa Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment.


Journal of Cell Signaling

Author(s): Kim HS, Ullevig SL, Zamora D, Lee CF, Asmis R

Abstract Share this page

Abstract Monocytic adhesion and chemotaxis are regulated by MAPK pathways, which in turn are controlled by redox-sensitive MAPK phosphatases (MKPs). We recently reported that metabolic disorders prime monocytes for enhanced recruitment into vascular lesions by increasing monocytes' responsiveness to chemoattractants. However, the molecular details of this proatherogenic mechanism were not known. Here we show that monocyte priming results in the S-glutathionylation and subsequent inactivation and degradation of MKP-1. Chronic exposure of human THP-1 monocytes to diabetic conditions resulted in the loss of MKP-1 protein levels, the hyperactivation of ERK and p38 in response to monocyte chemoattractant protein-1 (MCP-1), and increased monocyte adhesion and chemotaxis. Knockdown of MKP-1 mimicked the priming effects of metabolic stress, whereas MKP-1 overexpression blunted both MAPK activation and monocyte adhesion and migration induced by MCP-1. Metabolic stress promoted the S-glutathionylation of MKP-1, targeting MKP-1 for proteasomal degradation. Preventing MKP-1 S-glutathionylation in metabolically stressed monocytes by overexpressing glutaredoxin 1 protected MKP-1 from degradation and normalized monocyte adhesion and chemotaxis in response to MCP-1. Blood monocytes isolated from diabetic mice showed a 55\% reduction in MKP-1 activity compared with nondiabetic mice. Hematopoietic MKP-1 deficiency in atherosclerosis-prone mice mimicked monocyte priming and dysfunction associated with metabolic disorders, increased monocyte chemotaxis in vivo, and accelerated atherosclerotic lesion formation. In conclusion, we identified MKP-1 as a central redox-sensitive regulator of monocyte adhesion and migration and showed that the loss of MKP-1 activity is a critical step in monocyte priming and the metabolic stress-induced conversion of blood monocytes into a proatherogenic phenotype.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Cell Signaling

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version