alexa Reduced voltage sensitivity of activation of P Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)).

Author(s): Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N,

Abstract Share this page

Abstract Recent genetic analyses have revealed an important association of the gene encoding the P/Q-type voltage-dependent Ca(2+) channel alpha(1A) subunit with hereditary neurological disorders. We have identified the ataxic mouse mutation, rolling Nagoya (tg(rol)), in the alpha(1A) gene that leads to a charge-neutralizing arginine-to-glycine substitution at position 1262 in the voltage sensor-forming segment S4 in repeat III. Ca(2+) channel currents in acutely dissociated Purkinje cells, where P-type is the dominant type, showed a marked decrease in slope and a depolarizing shift by 8 mV of the conductance-voltage curve and reduction in current density in tg(rol) mouse cerebella, compared with those in wild-type. Compatible functional change was induced by the tg(rol) mutation in the recombinant alpha(1A) channel, indicating that a defect in voltage sensor of P/Q-type Ca(2+) channels is the direct consequence of the tg(rol) mutation. Furthermore, somatic whole-cell recording of mutant Purkinje cells displayed only abortive Na(+) burst activity and hardly exhibited Ca(2+) spike activity in cerebellar slices. Thus, in tg(rol) mice, reduced voltage sensitivity, which may derive from a gating charge defect, and diminished activity of the P-type alpha(1A) Ca(2+) channel significantly impair integrative properties of Purkinje neurons, presumably resulting in locomotor deficits.
This article was published in J Neurosci and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version