alexa Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Health & Medical Informatics

Author(s): Friedman L, Glover GH, Krenz D, Magnotta V FIRST BIRN

Abstract Share this page

Abstract Scanner-to-scanner variability of activation in multicenter fMRI studies is often considered undesirable. The purpose of this investigation was to evaluate the effect of a new procedure, "smoothness equalization", on reducing scanner differences in activation effect size as part of a multicenter fMRI project (FIRST BIRN). Five subjects were sent to 9 centers (10 scanners) and scanned on 2 consecutive days using a sensorimotor fMRI protocol. High-field (4 T and 3 T) and low-field (1.5 T) scanners from three vendors (GE, Siemens, and Picker) were included. The activation effect size of the scanners for the detection of neural activation during a sensorimotor task was evaluated as the percent of temporal variance accounted for by our model (percent of variance accounted for or PVAF). Marked scanner effects were noted for both PVAF as well as the degree of smoothness of the raw and processed images. After smoothness equalization, there was a dramatic (low field) or consistent (high-field) reduction in scanner-to-scanner variation of activation. It was shown that the likely basis of the scanner differences in smoothness was differences in k-space filtering algorithms. This work highlights the need to account for differences in smoothness when comparing scanners on activation effect size in multicenter fMRI studies. This article was published in Neuroimage and referenced in Journal of Health & Medical Informatics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]e.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords