alexa Reduction of liver ischemia reperfusion injury by silencing of TNF-α gene with shRNA.
Surgery

Surgery

Journal of Transplantation Technologies & Research

Author(s): HernandezAlejandro R, Zhang X, Croome KP, Zheng X, Parfitt J,

Abstract Share this page

Abstract BACKGROUND: Tumor necrosis factor-alpha (TNF-α) is a central mediator in the hepatic response to ischemia/reperfusion. Short hairpin RNA (shRNA) has been proven to be an effective means of harnessing the RNA interference pathway in mammalian cells. In the current study, we investigated whether silencing TNF-α gene with shRNA can prevent liver ischemic reperfusion injury (IRI). METHODS: Male BalB/c mice were randomized to TNF-α shRNA, scramble shRNA, or sham operation groups. TNF-α shRNA and scramble shRNA groups were injected 48 h before inducing IRI. IRI was induced via microaneurysm clamps applied to the left hepatic artery and portal vein. Six hours after reperfusion, IRI injury was examined by serum level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology, MPO, and MDA level, as well as by relative quantities of TNF-α mRNA. RESULTS: TNF-α expression induced by ischemia reperfusion in the liver was significantly suppressed after treatment with TNF-α shRNA compared with the group treated with scramble shRNA (P < 0.001). Mice treated with TNF-α shRNA showed lower peak values of AST and ALT than scramble shRNA treated mice (P < 0.001). On histopathologic slides, mice treated with TNF-α shRNA had significantly less ischemia/reperfusion injury based on Suzuki score than the scramble shRNA group, 3.57 ± 2.30 and 8.83 ± 0.98 respectively (P < 0.001), while the sham group was not significantly different from the TNF-alpha shRNA group, 0 ± 0 and 3.57 ± 2.30, respectively (P = 0.075). Liver tissue MDA levels were significantly lower in mice treated with TNF-α shRNA as compared with the group treated with scramble shRNA (P < 0.01). Immunohistochemical staining for MPO was significantly lower in mice treated with TNF-α shRNA compared with the group treated with shRNA (compared with treated with scramble shRNA group.) CONCLUSIONS: Liver IRI can be minimized through gene silencing of TNF-α. This may represent a novel therapy in the setting of transplantation and in other conditions associated with IRI of the liver. Copyright © 2012 Elsevier Inc. All rights reserved. This article was published in J Surg Res and referenced in Journal of Transplantation Technologies & Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version