alexa Redundant exonuclease involvement in Escherichia coli methyl-directed mismatch repair.


Biochemistry & Analytical Biochemistry

Author(s): Viswanathan M, Burdett V, Baitinger C, Modrich P, Lovett ST

Abstract Share this page

Abstract Previous biochemical analysis of Escherichia coli methyl-directed mismatch repair implicates three redundant single-strand DNA-specific exonucleases (RecJ, ExoI, and ExoVII) and at least one additional unknown exonuclease in the excision reaction (Cooper, D. L., Lahue, R. S., and Modrich, P. (1993) J. Biol. Chem. 268, 11823-11829). We show here that ExoX also participates in methyl-directed mismatch repair. Analysis of the reaction with crude extracts and purified components demonstrated that ExoX can mediate repair directed from a strand signal 3' of a mismatch. Whereas extracts of all possible single, double, and triple exonuclease mutants displayed significant residual mismatch repair, extracts deficient in RecJ, ExoI, ExoVII, and ExoX exonucleases were devoid of normal repair activity. The RecJ(-) ExoVII(-) ExoI(-) ExoX(-) strain displayed a 7-fold increase in mutation rate, a significant increase, but less than that observed for other blocks of the mismatch repair pathway. This elevation is epistatic to deficiency for MutS, suggesting an effect via the mismatch repair pathway. Our other work (Burdett, V., Baitinger, C., Viswanathan, M., Lovett, S. T., and Modrich, P. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 6765-6770) suggests that mutants are under-recovered in the exonuclease-deficient strain due to loss of viability that is triggered by mismatched base pairs in this genetic background. The availability of any one exonuclease is enough to support full mismatch correction, as evident from the normal mutation rates of all triple mutants. Because three of these exonucleases possess a strict polarity of digestion, this suggests that mismatch repair can occur exclusively from a 3' or a 5' direction to the mismatch, if necessary. This article was published in J Biol Chem and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version