alexa Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Hack I, Bancila M, Loulier K, Carroll P, Cremer H

Abstract Share this page

Abstract During development, Reelin acts on migrating neuronal precursors and controls correct cell positioning in the cortex and other brain structures by a hitherto unidentified mechanism. Here we show that in the postnatal mouse brain, Reelin acts as a detachment signal for chain-migrating interneuron precursors in the olfactory bulb. Neuronal precursors cultured in Matrigel detached from chains and migrated individually in the presence of exogenously added Reelin protein or Reelin-expressing brain tissues. Furthermore, we found that in reeler mutant mice, neuronal precursors accumulated in the olfactory bulb and remained in clusters, indicating that they did not change from tangential chain-migration to radial individual migration. Our data provide direct evidence that Reelin acts as a detachment signal, but not a stop or guidance cue. We propose that Reelin may have comparable functions during development. This article was published in Nat Neurosci and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version