alexa Reentry and fibrillation in the mouse heart. A challenge to the critical mass hypothesis.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Vaidya D, Morley GE, Samie FH, Jalife J

Abstract Share this page

Abstract The idea that fibrillation is only possible in hearts exceeding a critical size was introduced by W. Garrey >80 years ago and has since been generally accepted. In ventricular tissue, this critical size was originally estimated to be 400 mm(2). Recent estimates suggest that the critical size required for sustained reentry is approximately 100 to 200 mm(2), whereas 6 times this area is required for ventricular fibrillation. According to these estimates, fibrillation is not possible in the mouse heart, where the ventricular surface area is approximately 100 mm(2). To test whether sustained ventricular fibrillation could be induced in such an area, we used a high-speed video imaging system and a voltage-sensitive dye to quantify electrical activity on the epicardial surface of the Langendorff-perfused adult mouse heart. In 6 hearts, measurements during ventricular pacing at a basic cycle length (BCL) of 120 ms yielded maximum and minimum conduction velocities (CV(max) and CV(min)) of 0.63+/-0.04 and 0.38+/-0.02 mm/ms, respectively. At a BCL of 80 ms, CV(max) and CV(min) changed to 0.55+/-0.03 and 0. 34+/-0.02 mm/ms. Action potential durations (APDs), measured at 70\% repolarization at those pacing frequencies were found to be 44.5+/-2. 9 and 40.4+/-2.6 ms, respectively. The wavelengths (CVxAPD) were calculated to be 28.6+/-3.4 mm in the CV(max) direction and 16.8+/-1. 5 mm in the CV(min) direction at BCL 120 ms. Wavelengths were significantly reduced (P<0.05) at BCL 80 ms (CV(max), 22.2+/-1.8 mm; CV(min), 13.7+/-0.9 mm). In 5 hearts, stationary vortex-like reentry organized by single rotors (4 of 5 hearts) or by pairs of rotors (1 of 5 hearts) was induced by burst pacing. In the ECG, the activity manifested as sustained monomorphic tachycardia. Detailed analysis showed that the local CVs were reduced in the vicinity of the rotor center, which allowed the reentry to take place within a smaller area than was calculated from wavelength measurements during pacing. In 4 of 7 hearts, burst pacing resulted in a polymorphic ECG pattern indistinguishable from ventricular fibrillation. These data challenge the critical mass hypothesis by demonstrating that ventricular tissue with an area as small as 100 mm(2) is capable of undergoing sustained fibrillatory activity.
This article was published in Circ Res and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords