alexa Refraction tomography over a buried waste disposal site
Geology & Earth Science

Geology & Earth Science

Journal of Geology & Geophysics

Author(s): Eva Lanz, Hansruedi Maurer, Alan G Green

Abstract Share this page

Determining the depth and geometry of a landfill’s lower boundary is a difficult task. Potential field methods generally lack the necessary depth resolution, and seismic reflection data are usually contaminated by source‐generated noise in the time range of interest (<50 ms). To address this problem, we have developed a surface 2-D tomographic refraction scheme that is based on a fast finite‐difference eikonal solver and an inversion method that incorporates appropriate damping and smoothing constraints. This new scheme has been applied to a first‐arrival traveltime data set collected across adjacent landfills in northern Switzerland. High‐quality seismic data were collected along five profiles that crossed the landfills and two that sampled undisturbed natural sediments. Seismic waves generated from multiple shots were recorded on large numbers of closely spaced receivers during quiet evening periods. Reliability of the resultant velocity tomograms was estimated on the basis of (1) ray diagrams, (2) plots of synthetic and observed traveltimes, (3) traveltime residual analyses, (4) comparisons of coincident velocity‐depth profiles computed from intersecting profiles, (5) inversions with diverse input models, and (6) quantitative error analyses using a bootstrap technique. At our study site, the base of the near‐surface natural layer and the lower boundaries of the landfills were defined by rapid increases in velocity from <1000 m/s to >1500 m/s, with velocities in the upper parts of the models determined to within about ±100 m/s. The thickness of the near‐surface natural layer varied between 2 and 6 m, with occasional thickening to ∼7 m. In contrast, low velocities associated with the landfills could be traced to 9 to 11 m depth. Although our results have demonstrated that the tomographic refraction scheme may be an efficient and cost‐effective means of studying the very shallow subsurface (<20 m depth), complementary geological and other geophysical data were required to discriminate between velocity anomalies attributed to the landfills and those attributed to natural variations in the near‐surface geology.

This article was published in GEOPHYSICS and referenced in Journal of Geology & Geophysics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords