alexa Regulation of autophagy through multiple independent hypoxic signaling pathways.
Genetics

Genetics

Single Cell Biology

Author(s): Rouschop KM, Wouters BG, Rouschop KM, Wouters BG

Abstract Share this page

Abstract The poorly developed vasculature in solid human tumors is responsible for a profound level of intra- and inter-tumor heterogeneity in oxygen concentration. High levels of hypoxia are associated with poor patient prognosis due in part to hypoxia-induced changes in cell metabolism, angiogenesis, invasiveness and resistance to therapy. Over the past decade several distinct oxygen sensing pathways that regulate the cellular response to hypoxia have been defined. These include transcriptional and translational responses initiated by oxygen-dependent stabilization of the HIF-1 transcription factor, activation of the unfolded protein response (UPR) and inhibition of the mTOR (mammalian target of rapamycin) kinase signaling pathway. Variations in the duration and severity of hypoxic stress differentially activate these responses and lead to substantial phenotypic variation amongst otherwise identical tumor cells. Nevertheless, several studies have provided links between HIF-, UPR- and mTOR-mediated signaling and the induction of autophagy. This process facilitates survival during metabolic stress and may also be an important mechanism for the removal of potentially toxic damaged proteins and organelles. We propose that overlapping mechanisms of autophagy regulation by HIF, mTOR and the UPR function to coordinately promote hypoxia tolerance and tumor cell survival.
This article was published in Curr Mol Med and referenced in Single Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords