alexa Regulation of cellular 15-lipoxygenase activity on pretranslational, translational, and posttranslational levels.
Immunology

Immunology

Journal of Cytokine Biology

Author(s): Khn H, Heydeck D, Brinckman R, Trebus F

Abstract Share this page

Abstract In mammalian cells, enzymatic lipid peroxidation catalyzed by 12/15-lipoxygenases is regulated by pretranslational, translational, and posttranslational processes. In rabbits, rats, and mice induction of experimental anemia leads to a systemic up-regulation of 12/15-lipoxygenases expression. In addition, interleukins-4 and -13 were identified as strong up-regulators of this enzyme in human and murine monocyte/macrophages and in the lung carcinoma cell line A549, and the interleukin-4(13) cell surface receptor as well as the signal transducer and activator of transcription 6 (STATG) appears to be involved in the signal transduction cascade. On the level of translation, 15-lipoxygenase synthesis is blocked by the binding of regulatory proteins to a characteristic guanine-cytosine-rich repetitive element in the 3'-untranslated region of the rabbit 15-lipoxygenase mRNA, and the formation of such 15-lipoxygenase mRNA/protein complexes was identified as molecular reason for the translational inactivity of the 15-lipoxygenase mRNA in immature red blood cells. However, proteolytic breakdown of the regulatory proteins which were recently identified as hnRNP K and hnRNP E1 overcomes translational inhibition during later stages of reticulocyte maturation. For maximal intracellular activity, 12/15-lipoxygenases require a rise in cytosolic calcium concentration inducing a translocation of the enzyme from the cytosol to cellular membranes as well as small amounts of preformed hydroperoxides which act as essential activators of the enzymes. 12/15-Lipoxygenases undergo irreversible suicide inactivation during fatty acid oxygenation, and this process may be considered an element of down-regulation of enzyme activity. Suicide inactivation and proteolytic breakdown may contribute to the disappearance of functional 12/15-lipoxygenase at later stages of erythropoiesis.
This article was published in Lipids and referenced in Journal of Cytokine Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords