alexa Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3',5'-triiodothyronine.


Journal of Carcinogenesis & Mutagenesis

Author(s): Farwell AP, DubordTomasetti SA, Pietrzykowski AZ, Stachelek SJ, Leonard JL

Abstract Share this page

Abstract The timing of granule cell migration in the developing cerebellum is regulated by thyroid hormone. Granule cell migration depends on the recognition of extracellular neuronal guidance molecule(s), such as laminin, and this, in turn, requires cell surface adhesion molecules (integrins) that are anchored on the cell membrane by the actin cytoskeleton. While many of the actions of thyroid hormone, specifically 3,5,3'-triiodothyronine (T3), are mediated by regulated gene expression, both thyroxine (T4) and 3,3',5'-triiodothyronine (rT3) also exert direct, positive control of the quantity of polymerized actin in cultured astrocytes without affecting gene expression. T4-dependent actin polymerization has been shown to (i) participate in the immobilization of laminin to the cell surface, (ii) help deposit laminin in the molecular layer of the developing cerebellum, and (iii) anchor integrin(s) that recognize laminin present in the extracellular matrix. In this study, we show that both T4 and rT3, but not T3, directly regulate the F-actin content of elongating neurites of cerebellar neurons. T4 and rT3 also promoted extensive granule cell migration from cerebellar explants, as well as, dense cell clustering and extensive neuronal process formation when granule cells were grown on a laminin-coated surface. Both granule cell migration and neuronal process outgrowth were markedly attenuated by the addition of integrin-blocking antibodies or binding peptides, by the absence of thyroid hormone or the presence of T3. These data suggest that the T4-dependent actin polymerization in developing neurons is necessary for these migrating cells to recognize the laminin guidance molecule, thereby providing a novel molecular mechanism for the profound influence of thyroid hormone on brain development that is independent of regulated gene expression. This article was published in Brain Res Dev Brain Res and referenced in Journal of Carcinogenesis & Mutagenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version