alexa Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes.
Diabetes & Endocrinology

Diabetes & Endocrinology

Endocrinology & Metabolic Syndrome

Author(s): Sabri A, Hughie HH, Lucchesi PA

Abstract Share this page

Abstract Increasing evidence suggests that oxidative and nitrosative stress play an important role in regulation of cardiac myocyte growth and survival. The cardiovascular system is continuously exposed to both reactive oxygen species (ROS) and nitrogen species (RNS), collectively termed reactive inflammatory species (RIS), and imbalances between the enzymes that regulate their bioavailability are associated with cardiac hypertrophy and the pathogenesis of cardiomyopathies, myocardial infarction and heart failure. It is now clear that RIS act as critical regulators of cardiac myocyte hypertrophy and apoptosis through control of redox-sensitive signaling cascades, such as tyrosine kinases and phosphatases, protein kinase C, and mitogen-activated protein kinases. This review will focus on the mechanisms by which ROS/RNS modulate cardiac myocyte growth and apoptosis induced by neurohormones and cytokines, and will discuss evidence for a role in the pathophysiology of heart failure. This article was published in Antioxid Redox Signal and referenced in Endocrinology & Metabolic Syndrome

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version