alexa Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells.
Cardiology

Cardiology

Journal of Hypertension: Open Access

Author(s): Diecke FP, Wen Q, Iserovich P, Li J, Kuang K,

Abstract Share this page

Abstract We have previously demonstrated the presence of a Na(+)-K(+)-2Cl cotransporter in cultured bovine corneal endothelial cells (CBCEC) and determined that this cotransporter is located in the basolateral membrane. This transporter may contribute to volume regulation and transendothelial fluid transport. We have now investigated factors regulating the activity of the cotransporter. This activity was assessed by measuring the bumetanide-sensitive (86)Rubidium ((86)Rb) uptake in (86)Rb-containing solutions. Data were normalized to protein content determined with a Lowry protein assay. We investigated the regulation by extracellular and intracellular ion concentrations, by osmotic gradients, and by second messengers. Our results indicate that extracellular Na+ and K+ each are required for activation of the cotransporter and activate with first-order kinetics at half-maximally effective concentrations (k(1/2)) of 21.1 and 1.33 mM, respectively. Extracellular Cl- is also required for cotransport activation, but shows higher order kinetics; the k(1/2) for Cl- is 28.1 mM and the Hill coefficient 2.1. HCO(3)(-) exerts a modulating effect on cotransporter activity; at 0 HCO(3)(-) the bumetanide-sensitive K(+) uptake is reduced by 30\% compared to that at 26 mm HCO(3)(-). Manipulations of the intracellular [Cl-] by preincubation in Cl- -free solution or inhibition of Cl- efflux resulted in increased uptake at low [Cl-](i) and decreased uptake at high [Cl-](i). To assess the role of protein kinases in the regulation of cotransport, we have determined the effect of protein kinase inhibitors. H-89 and KT5270, inhibitors of PKA, inhibit cotransport almost completely, while calphostin C, an inhibitor of PKC, produces a small activation of cotransport. The tyrosine kinase inhibitor genistein reduced K+ uptake while its inactive analog daidzein was without effect. The calmodulin kinase inhibitor KN-93 was without effect. We also investigated the effects of phosphatase inhibitors. Calyculin A (k(1/2)=21 nM) and okadaic acid (k(1/2)=915 nM) produced approximate doubling of K+ uptake, suggesting that phosphatase 1 is dominant. We also investigated the role of the cytoskeleton and its activation. Reduction of Ca(i)(2+) by preincubation in Ca2+ -free medium as well as by exposure to W-7, an inhibitor of the binding of Ca(2+) to calmodulin, reduced K+ uptake. Consistent with this, ML-7, a relatively specific inhibitor of the Ca2+ -calmodulin activated myosin light chain kinase, inhibited cotransport by 40\%. The Ca2+ -calmodulin activated myosin light chain kinase contributes to the modulation of the cytoskeleton by regulating the actin-myosin interaction. Consistent with the above, disruption of the actin polymerization by cytochalasin D led to a decrease in K+ uptake. We conclude that extracellular Na+, K+ and Cl- are requirements for the function of the CBCEC Na(+)-K(+)-2Cl(-) cotransporter, while intracellular Cl- and extracellular HCO(3)(-) modulate its activity. Several protein kinases, including PKA, PKC, tyrosine kinase, and myosin light chain kinase, modulate the K+ uptake. Another modulating pathway for cotransport involves the state of the cytoskeleton. This article was published in Exp Eye Res and referenced in Journal of Hypertension: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Conference on Hypertension
    October 30-31, 2017 Atlanta USA
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords