alexa Regulation of poly(beta-hydroxybutyrate) synthesis in Methylobacterium rhodesianum MB 126 growing on methanol or fructose.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Mothes G, Ackermann JU, Babel W

Abstract Share this page

Abstract The intracellular concentration of CoA metabolites and nucleotides was determined in batch cultures of Methylobacterium rhodesianum grown on methanol and shifted to growth on fructose. The intracellular concentration of CoA decreased from a high value of 0.6 nmol/mg poly(beta-hydroxybutyrate)-free bacterial dry mass during growth on methanol to a low value of 0.03 nmol/mg poly(beta-hydroxybutyrate)-free bacterial dry mass after a shift to fructose as a carbon source. The levels of NADH, NADPH, and acetyl-CoA were also lower. Under these conditions, acetyl-CoA was metabolized by both citrate synthase and beta-ketothiolase, and poly(beta-hydroxybutyrate) synthesis and growth occurred simultaneously during growth on fructose. Moreover, the level of ATP was approximately 50\% lower during growth on fructose, supporting the hypothesis of a bottleneck in the energy supply during the growth of M. rhodesianum with fructose.
This article was published in Arch Microbiol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version