alexa Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Fong H, Hohenstein KA, Donovan PJ

Abstract Share this page

Abstract Human embryonic stem (hES) cells, derived from blastocysts, are capable of unlimited self-renewal and differentiation into all cell lineages of the body. Because of their pluripotent nature, hES cells are valuable tools for understanding human development and advancing the field of regenerative medicine. However, one key to harnessing the therapeutic power of hES cells for biomedical applications begins with determining how these cells maintain their pluripotent and undifferentiated state. Studies in mice have implicated three factors in regulating pluripotency in embryonic stem cells, Oct4, Nanog, and Sox2. However, significant differences in growth regulation between mouse embryonic stem and hES cells have been identified, suggesting a need to determine when and how factors work in hES cells. To date, the transcription factors Oct4 and Nanog have been identified as critical regulators of stem cell fate by functional studies in hES cells. To determine the role of Sox2 in maintaining hES cell pluripotency and self-renewal, we used RNA interference to specifically knock down Sox2 gene expression. Reduction of Sox2 expression in hES cells results in loss of the undifferentiated stem cell state, as indicated by a change in cell morphology, altered stem cell marker expression, and increased expression of trophectoderm markers. In addition, knockdown of Sox2 results in reduced expression of several key stem cell factors, including Oct4 and Nanog, linking these three factors together in a pluripotent regulatory network. Disclosure of potential conflicts of interest is found at the end of this article. This article was published in Stem Cells and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords