alexa Regulatory analysis of the mouse Fgf3 gene: control of embryonic expression patterns and dependence upon sonic hedgehog (Shh) signalling.
Medicine

Medicine

Anatomy & Physiology: Current Research

Author(s): Powles N, Marshall H, Economou A, Chiang C, Murakami A,

Abstract Share this page

Abstract Fgf3 displays a dynamic and complex expression pattern during mouse embryogenesis. To address the molecular mechanisms underlying Fgf3 expression, we used a transgenic approach to assay genomic regions from the mouse Fgf3 gene for regulatory activity. We identified an enhancer that mediates major components of embryonic expression, governing expression in the midbrain, hindbrain, surface ectoderm, dorsal roots and dorsal root ganglia (DRG), proximal sensory ganglia, and the developing central nervous system (CNS). Deletional analysis of the enhancer further delimited this regulatory activity to a 5.7-kb fragment. We have also revealed sonic hedgehog (Shh) -dependent and Shh-independent aspects of Fgf3 expression through breeding the Fgf3 reporter transgene into Shh mutants. In the absence of Shh signalling, Fgf3 reporter expression is lost in the ventral CNS, DRG, and superior cervical nerves, whereas activation of reporter expression in cranial ganglion cells is Shh independent. Moreover, detailed re-examination of the Shh phenotype revealed that Shh signalling is required for the correct development/maturation of the DRG. Copyright 2004 Wiley-Liss, Inc. This article was published in Dev Dyn and referenced in Anatomy & Physiology: Current Research

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords