alexa Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.
Veterinary Sciences

Veterinary Sciences

Research & Reviews: Journal of Veterinary Sciences

Author(s): Feniouk BA, Yoshida M

Abstract Share this page

Abstract H(+)-F(O)F(1)-ATP synthase catalyzes synthesis of ATP from ADP and inorganic phosphate using the energy of transmembrane electrochemical potential difference of proton (deltamu(H)(+). The enzyme can also generate this potential difference by working as an ATP-driven proton pump. Several regulatory mechanisms are known to suppress the ATPase activity of F(O)F(1): 1. Non-competitive inhibition by MgADP, a feature shared by F(O)F(1) from bacteria, chloroplasts and mitochondria 2. Inhibition by subunit epsilon in chloroplast and bacterial enzyme 3. Inhibition upon oxidation of two cysteines in subunit gamma in chloroplast F(O)F(1) 4. Inhibition by an additional regulatory protein (IF(1)) in mitochondrial enzyme In this review we summarize the information available on these regulatory mechanisms and discuss possible interplay between them. This article was published in Results Probl Cell Differ and referenced in Research & Reviews: Journal of Veterinary Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version