alexa Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Kashiwagi H, Yamazaki K, Takekuma Y, Ganapathy V, Sugawara M

Abstract Share this page

Abstract Several studies have demonstrated that the activity of system A is upregulated by insulin, osmotic shock and amino acid deprivation. However, the mechanisms are not clear. We carried out studies using L6 rat skeletal muscle cells to clarify the mechanisms of upregulation of system A activity by insulin, osmotic shock and amino acid deprivation. The upregulation was found to be due to an increase in Vmax, not Km. Chloroquine and wortmannin inhibited the upregulation induced by insulin stimulation and amino acid deprivation but not that induced by osmotic shock. On the other hand, cycloheximide and actinomycin D inhibited the upregulation by each stimulation. Moreover, PD98059 and SP600125 inhibited only amino acid deprivation-induced upregulation and SB202190 inhibited only insulin-induced upregulation. Our findings indicate that the mechanisms of upregulation of system A activity by insulin, osmotic shock and amino acid deprivation are different in L6 cells. Western blot and RT-PCR analysis showed an increase in system A at the protein and mRNA levels with each stimulation. This article was published in Amino Acids and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords