alexa Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Pattwell DM, McArdle A, Morgan JE, Patridge TA, Jackson MJ

Abstract Share this page

Abstract A number of studies have indicated that exercise is associated with an increased oxidative stress in skeletal muscle tissue, but the nature of the increased oxidants and sites of their generation have not been clarified. The generation of extracellular reactive oxygen and nitrogen species has been studied in myotubes derived from an immortalized muscle cell line (H-2k(b) cells) that were stimulated to contract by electrical stimulation in culture. Cells were stimulated to contract with differing frequencies of electrical stimulation. Both induced release of superoxide anion and nitric oxide into the extracellular medium and caused an increase in extracellular hydroxyl radical activity. Increasing frequency of stimulation increased the nitric oxide generation and hydroxyl radical activity, but had no significant effect on the superoxide released. Additions of inhibitors of putative generating pathways indicated that contraction-induced NO release was primarily from neuronal NO synthase enzymes and that the superoxide released is likely to be generated by a plasma membrane-located, flavoprotein oxidoreductase system. The data also indicate that peroxynitrite is generated in the extracellular fluid of muscle during contractile activity. This article was published in Free Radic Biol Med and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version