alexa Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM,

Abstract Share this page

Abstract BACKGROUND: Transplantation of ex vivo expanded circulating endothelial progenitor cells (EPCs) from peripheral blood mononuclear cells improves the neovascularization after critical ischemia. However, the origin of the endothelial progenitor lineage and its characteristics have not yet been clearly defined. Therefore, we investigated whether the phenotype and functional capacity of EPCs to improve neovascularization depend on their monocytic origin. METHODS AND RESULTS: Monocytic CD14+ cells were isolated from mononuclear cells and incubated on fibronectin-coated dishes in endothelial medium in the presence of vascular endothelial growth factor. After 4 days of cultivation, adherent cells deriving from CD14+ or CD14- mononuclear cells showed equal expression of endothelial marker proteins and capacity for clonal expansion as determined by measuring endothelial colony-forming units. In addition, transplanted EPCs (5x10(5) cells) deriving from CD14+ or CD14- cells were incorporated into vascular structures of nude mice after hind-limb ischemia and significantly improved neovascularization from 0.27+/-0.12 (no cells) to 0.66+/-0.12 and 0.65+/-0.17, respectively (P<0.001; laser Doppler-derived relative blood flow). In contrast, no functional improvement of neovascularization was detected when freshly isolated CD14+ mononuclear cells without ex vivo expansion were used (0.33+/-0.17). Moreover, macrophages or dendritic cells differentiated from isolated CD14+ cells were significantly less effective in improving neovascularization than EPCs cultivated from the same starting population (P<0.01). CONCLUSIONS: These data demonstrate that EPCs can be generated from nonmonocytic CD14- peripheral blood mononuclear cells and exhibit a unique functional activity to improve neovascularization after hind-limb ischemia. This article was published in Circulation and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords