alexa Reliability improvement of a sound quality index for a vehicle HVAC system using a regression and neural network model.
General Science

General Science

Journal of Ergonomics

Author(s): JiHyun Yoon, InHyung Yang, JaeEun Jeong, SangGil Park

Abstract Share this page

The reduction of vehicle interior noise has long been the main interest of noise and vibration harshness (NVH) engineers. A driver’s perception of vehicle noise is largely affected by psychoacoustic noise characteristics and SPL. Among the various types of vehicle interior noise, the sound of the heating, ventilation, and air conditioning (HVAC) systems is a source of distraction for drivers. HVAC noise is not as loud as the overall noise level; however, it affects a driver’s subjective perception and may lead to feelings of nervousness or annoyance. Therefore, vehicle engineers work not only to reduce noise, but also to improve sound quality. In this paper, HVAC noise samples were taken from many types of vehicles. Objective and subjective sound quality (SQ) evaluations were obtained, simple and multiple regression models were generated, and these were used with the Semantic Differential Method (SDM) to determine what characteristics trigger a ‘‘pleasant’’ response from listeners. The regression analysis produced diagnostic statistics and regression estimates. In addition, neural network (NN) models were created using three objective numerical inputs (loudness, sharpness, and roughness) of the SQ metrics and one subjective output (‘‘pleasant’’). The NN model was used primarily because human perceptions are very complex and often hard to estimate. The estimation models were compared via correlations between SQ output indices and hearing test results. Results demonstrated that the NN model is most highly correlated with SQ indices, which led to determination of suggested methods for SQ metrics prediction

This article was published in Applied Acoustics and referenced in Journal of Ergonomics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version