alexa Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Venkata Mohan S, Ramanaiah SV, Rajkumar B, Sarma PN

Abstract Share this page

Abstract This communication presents results pertaining to the adsorptive studies carried out on fluoride removal onto algal biosorbent (Spirogyra IO2). Batch sorption studies were performed and the results revealed that biosorbent demonstrated ability to adsorb the fluoride. Influence of varying the conditions for removal of fluoride, such as the fluoride concentration, the pH of aqueous solution, the dosage of adsorbent, the temperature on removal of fluoride, and the adsorption-desorption studies were investigated. Sorption interaction of fluoride on to algal species obeyed the pseudo first order rate equation. Experimental data showed good fit with the Langmuir's adsorption isotherm model. Fluoride sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at lower pH. Maximum fluoride sorption was observed at operating 30 degrees C operating temperature. Adsorption-desorption of fluoride into inorganic solutions and distilled water was observed and this indicated the combined effect of ion exchange and physical sorption phenomena. Significant changes in the FT-IR spectra was observed after fluoride sorption which is indicative of the participation of surface function groups associated with hydrogen atoms in the carboxylic groups in sorption interaction. From X-ray photoelectron spectroscopy (XPS) analysis a marginal increase in the area for the binding energy peak at 287.4eV was observed which could be due to the formation of -C-F- bonds. Thermogravimetric (TGA) analysis of the fluoride loaded sorbent showed that the biosorbent underwent three steps decomposition process when heated from 25 to 100 degrees C. The maximum weight loss was observed to be between 200 and 400 degrees C and 700 and 800 degrees C. This article was published in J Hazard Mater and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version