alexa Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Senturk HB, Ozdes D, Gundogdu A, Duran C, Soylak M

Abstract Share this page

Abstract A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g(-1). Desorption of phenol from the loaded adsorbent was achieved by using 20\% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R(2) > 0.99). Thermodynamic parameters including the Gibbs free energy (DeltaG degrees), enthalpy (DeltaH degrees), and entropy (DeltaS degrees) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 degrees C. This article was published in J Hazard Mater and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version