alexa Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light.
Materials Science

Materials Science

Research & Reviews: Journal of Material Sciences

Author(s): Muhammad Abdul Nasir Khan, Maria Siddique, Fazli Wahid, Romana Khan

Abstract Share this page

An efficient sonophotocatalytic degradation of reactive blue 19 (RB 19) dye was successfully carried out using sulfur-doped TiO2 (S-TiO2) nanoparticles. The effect of various treatment processes that is sonolysis, photolysis, catalysis, sonocatalysis, photocatalysis, and sonophotocatalysis were investigated for RB 19 removal. S-TiO2 were synthesized in 1, 3 and 5 wt.% of sulfur by sol–gel process and characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX), UV–Visible diffuse reflectance spectra (DRS). The results confirm anatase phase of TiO2, porous agglomerate structure, and a red shift in the absorbance spectra of S-TiO2. The dye degradation was studied by using UV–Vis spectrophotometer at λmax = 594 nm. The reaction parameters such as pH, catalyst dosage, initial dye concentration, ultrasonic power and effect of sulfur doping in different weight percent were studied to find out the optimum degradation conditions. Optimum conditions were found as: S-TiO2 = 5 wt.%, catalyst (S-TiO2 5 wt.%) = 50 mg, RB 19 solution concentration = 20 mg L−1, pH = 3, ultrasound power = 100 and operating temperature = 25 °C. The response of 5 wt.% S-TiO2 was found better than 1 and 3 wt.% S-TiO2 and other forms TiO2. The sonophotocatalysis process was superior to other methods. During this process the ultrasound cavitation and photocatalysis water splitting takes place which leads to the generation of radical dotOH. As reveled by the GCMS results the reactive blue 19 (20 mgL−1) was degraded to 90% within 120 min. The S-TiO2 sonophotocatalysis system was studied for the first time for dye degradation and was found practicable, efficient and cost effective for the degradation of complex and resistant dyes such as RB19.

This article was published in Ultrasonics Sono chem and referenced in Research & Reviews: Journal of Material Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version