alexa Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Kuroda S, Siesj BK

Abstract Share this page

Abstract The mechanisms of reperfusion damage following focal cerebral ischemia are not known in detail. Recent results, however, strongly suggest that reactive oxygen species (ROS), generated during the reperfusion period, may trigger the reperfusion injury. Mitochondrial calcium overload and a permeability transition (PT) of the inner mitochondrial membrane have been shown to play an important role in production of ROS by the mitochondria. The immunosuppressant cyclosporin A (CsA), which inhibits mitochondrial PT, protects against delayed neuronal necrosis of the hippocampal CA1 sector following transient forebrain/global ischemia. In focal ischemia ("stroke"), expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) may lead to production of ROS by polymorphonuclear (PMN) leukocytes, which suggests the involvement of inflammatory and immunological reactions in reperfusion damage. The spin trap alpha-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size and prevents a secondary mitochondrial dysfunction due to reperfusion, probably scavenging free radicals at the blood-endothelial cell interface.
This article was published in Clin Neurosci and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version