alexa Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos.
Reproductive Medicine

Reproductive Medicine

Journal of Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology

Author(s): Inoue A, Zhang Y

Abstract Share this page

Abstract Although global erasure of DNA methylation has been observed in zygotes and primordial germ cells, the responsible enzyme(s) have been elusive. The demonstration that members of the Tet (ten eleven translocation) family of proteins are capable of catalyzing conversion of 5-methylcytosine (5mC) of DNA to 5-hydroxymethylcytosine (5hmC) raises the possibility that Tet proteins may participate in this process. Indeed, recent studies have implicated the involvement of Tet3 in the conversion of 5mC to 5hmC in zygotes. This result, combined with the demonstration that Tet proteins can further oxidize 5hmC to 5-carboxylcytosine followed by excision by thymine-DNA glycosylase, raises the possibility that active demethylation may take place in a process that involves Tet3-mediated oxidation followed by base excision repair. We demonstrated by immunostaining of mitotic chromosome spreads of preimplantation embryos that the 5hmC associated with the paternal genome in zygotes is gradually lost during preimplantation development. Our study suggests that, although the conversion of 5mC to 5hmC in zygotes is an enzyme-catalyzed process, loss of 5hmC during preimplantation appears to be a DNA replication-dependent passive process.
This article was published in Science and referenced in Journal of Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version