alexa Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation.
Haematology

Haematology

Journal of Bone Research

Author(s): Pereira WC

Abstract Share this page

Mesenchymal stem cells (MSCs) are considered to be a source of stem cells in tissue regeneration and therapeutics, due to their ability to undergo proliferation and differentiation. Complications associated with bone marrow-derived MSCs has prompted researchers to explore alternative sources of MSCs. The human umbilical cord is one such source; it is easily available and its collection is non-invasive. The sources of MSCs are non-controversial and thus they are not subjected to ethical constraints, as in the case of embryonic stem cells. MSCs are multipotent stem cells and has the ability to differentiate into various cell types of the mesodermal lineage. The aim of this study was to establish a reproducible method for the isolation of MSCs from human umbilical cord, as the few methods published till date gave inconsistent results and had a mixed population of contaminating endothelial cells. In our isolation strategy, we isolated a pure population of MSCs from Wharton's jelly of the human umbilical cord, which is very rich in collagen, and we used a high concentration of collagenase enzyme in the isolation of MSCs. Extensive phenotypic characterization analysis of these cells, using flow cytometry and antibody staining methods, have shown that we were able to isolate a pure population of the mesenchymal lineage cells that is devoid of haematopoietic and endothelial cell contaminants. When these MSCs were subjected to cardiomyocyte differentiation, we observed a change in the morphological characteristics, which was accompanied by the formation of myotube structures and spontaneous beating after 21 days.

This article was published in J Tissue Eng Regen Med. and referenced in Journal of Bone Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords