alexa Resistance exercise, muscle loading unloading and the control of muscle mass.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Baar K, Nader G, Bodine S

Abstract Share this page

Abstract Muscle mass is determined by the difference between the rate of protein synthesis and degradation. If synthesis is greater than degradation, muscle mass will increase (hypertrophy) and when the reverse is true muscle mass will decrease (atrophy). Following resistance exercise/increased loading there is a transient increase in protein synthesis within muscle. This change in protein synthesis correlates with an increase in the activity of protein kinase B/Akt and mTOR (mammalian target of rapamycin). mTOR increases protein synthesis by increasing translation initiation and by inducing ribosomal biogenesis. By contrast, unloading or inactivity results in a decrease in protein synthesis and a significant increase in muscle protein breakdown. The decrease in synthesis is due in part to the inactivation of mTOR and therefore a decrease in translation initiation, but also to a decrease in the rate of translation elongation. The increase in degradation is the result of a co-ordinated response of the calpains, lysosomal proteases and the ATP-dependent ubiquitin-proteosome. Caspase 3 and the calpains act upstream of the ubiquitin-proteosome system to assist in the complete breakdown of the myofibrillar proteins. Two muscle specific E3 ubiquitin ligases, MuRF1 and MAFbx/atrogen-1, have been identified as key regulators of muscle atrophy. In this chapter, these pathways and how the balance between anabolism and catabolism is affected by loading and unloading will be discussed. This article was published in Essays Biochem and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords