alexa Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor.
Agri and Aquaculture

Agri and Aquaculture

Journal of Fertilizers & Pesticides

Author(s): Ferr J, Real MD, Van Rie J, Jansens S, Peferoen M

Abstract Share this page

Abstract The biochemical mechanism for resistance to Bacillus thuringiensis crystal proteins was studied in a field population of diamondback moths (Plutella xylostella) with a reduced susceptibility to the bioinsecticidal spray. The toxicity and binding characteristics of three crystal proteins [CryIA(b), CryIB, and CryIC] were compared between the field population and a laboratory strain. The field population proved resistant (greater than 200-fold compared with the laboratory strain) to CryIA(b), one of the crystal proteins in the insecticidal formulation. Binding studies showed that the two strains differ in a membrane receptor that recognizes CryIA(b). This crystal protein did not bind to the brush-border membrane of the midgut epithelial cells of the field population, either because of strongly reduced binding affinity or because of the complete absence of the receptor molecule. Both strains proved fully susceptible to the CryIB and CryIC crystal proteins, which were not present in the B. thuringiensis formulation used in the field. Characteristics of CryIB and CryIC binding to brush-border membranes of midgut epithelial cells were virtually identical in the laboratory and the field population.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Fertilizers & Pesticides

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version