alexa Resolvin E1 protects the rat heart against reperfusion injury.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Keyes KT, Ye Y, Lin Y, Zhang C, PerezPolo JR,

Abstract Share this page

Abstract The purpose of the present study was to assess whether resolvin E1 (RvE1), an anti-inflammatory mediator derived from eicosapentaenoic acid, would limit myocardial infarct size in the rat. The H9c2 cell line was used to assess whether RvE1 has direct protective effects on cardiomyocytes. In in vivo experiments, Male Sprague-Dawley rats underwent 30 min of ischemia/4 h of reperfusion. Before reperfusion, rats received intravenous RvE1 (0, 0.03, 0.1, or 0.3mg/kg). In in vitro experiments, H9c2 cells were incubated with RvE1 (0, 1, 10, 100, or 1000 nM). Cells were subjected to 18 h of incubation under normoxic conditions, 16 h of hypoxia, or 16 h of hypoxia and 2 h of reoxygenation. In vivo, RvE1 dose dependently reduced infarct size (30.7 +/- 1.7\% of the area at risk in the control group and 29.1 +/- 1.6\%, 14.7 +/- 1.3\%, and 9.0 +/- 0.6\% in the 0.03, 0.1, and 0.3 mg/kg groups, respectively, P < 0.001). In vitro, RvE1 increased viability and decreased apoptosis in a dose-dependent fashion in cells exposed to hypoxia or hypoxia/reoxygenation. A maximal effect was achieved at a concentration of 100 nM. RvE1 augmented phosphoinositide 3-kinase activity, attenuated caspase-3 activity, and augmented calcium-dependent nitric oxide synthase activity in cells exposed to hypoxia or hypoxia/reoxygenation. RvE1 increased Akt, ERK1/2, and endothelial nitric oxide synthase phosphorylation and attenuated the levels of activated caspase-3 and phosphorylated p38 levels. AG-1478, an EGF receptor tyrosine kinase inhibitor, blocked the protective effect of RvE1 both in vivo and in vitro and attenuated the RvE1-induced increase in Akt and ERK1/2 phosphorylation. In conclusion, RvE1, an anti-inflammatory mediator derived from eicosapentaenoic acid, has a direct protective effect on cardiomyocytes against ischemia-reperfusion injury and limits infarct size when administered intravenously before reperfusion. This article was published in Am J Physiol Heart Circ Physiol and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version