alexa Respiration capacity and consequences in Lactococcus lactis.
Microbiology

Microbiology

Mycobacterial Diseases

Author(s): Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J,

Abstract Share this page

Abstract We recently reported that the well-studied fermenting bacterium Lactococcus lactis could grow via a respirative metabolism in the presence of oxygen when a heme source is present. Respiration induces profound changes in L. lactis metabolism, and improvement of oxygen tolerance and long-term survival. Compared to usual fermentation conditions, biomass is approximately doubled by the end of growth, acid production is reduced, and large amounts of normally minor end products accumulate. Lactococci grown via respiration survive markedly better after long-term storage than fermenting cells. We suggest that growth and survival of lactococci are optimal under respiration-permissive conditions, and not under fermentation conditions as previously supposed. Our results reveal the uniqueness of the L. lactis respiration model. The well-studied 'aerobic' bacteria express multiple terminal cytochrome oxidases, which assure respiration all throughout growth; they also synthesize their own heme. In contrast, the L. lactis cydAB genes encode a single cytochrome oxidase (bd), and heme must be provided. Furthermore, cydAB genes mediate respiration only late in growth. Thus, lactococci exit the lag phase via fermentation even if heme is present, and start respiration in late exponential phase. Our results suggest that the spectacularly improved survival is in part due to reduced intracellular oxidation during respiration. We predict that lactococcal relatives like the Enterococci, and some Lactobacilli, which have reported respiration potential, will display improved survival under respiration-permissive conditions.
This article was published in Antonie Van Leeuwenhoek and referenced in Mycobacterial Diseases

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringj[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords