alexa Response of a collagenase-induced tendon injury to treatment with a polysulphated glycosaminoglycan (Adequan).
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Oryan A, Goodship AE, Silver IA

Abstract Share this page

Abstract This study explored the hypothesis that local administration of a polysulphated glycosaminoglycan (PSGAG) in the early phase of healing of a standard collagenase-induced tendon injury in the superficial digital flexor tendon of the rabbit would reduce the degenerative effects of inflammatory mediators and proteases and preserve normal tendon morphology, composition, and biomechanical properties. Histological and ultrastructural changes together with the mechanical properties, dry weight, collagen content, and amount of DNA in healing tissue at the site of the lesion were assessed in treated and untreated animals. In treated lesions 28 days after injury, the normal orientation of tenoblasts and collagen fibrils was well preserved compared with the disorganized scar formation seen in untreated animals. The degree of cellularity was significantly higher in the untreated lesions. At the ultrastructural level the collagen in the healing tissue of the treated animals consisted of a mixture of small diameter, new regenerated fibrils intermingled with well-preserved large diameter, old fibrils, aligned to the long axis of the tendon; in untreated animals small, randomly arranged new fibrils predominated. The diameters of treated tendons had returned to normal, but in untreated animals the injured tendons remained significantly thicker than their controls. The percentage dry weight and collagen contents of treated injured tendons approximated those of control normal tendons, whereas those of untreated tendons were significantly less than those of the control values. The DNA content of injured treated tendons was not significantly different from that of normal contralateral controls, while in the untreated tendons it was significantly higher. There were no significant differences between the normal and the contralateral treated injured tendons in ultimate strength, fatigue strength, stiffness, and maximum absorbed energy. However in the untreated animals, although the tendon diameter was significantly greater, the ultimate strength, fatigue strength, stiffness, and maximum absorbed energy were significantly lower than the contralateral control. These data suggest that polysulphated glycosaminoglycans are effective in restoring the morphological, biochemical, and biomechanical properties of injured soft connective tissues and may be of clinical value in the treatment of acute tendon injury. This article was published in Connect Tissue Res and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version